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Abstract
Dementia is a social problem in the aging society of advanced countries. Presently, 46.8 million people affected with 
dementia worldwide, and it may increase to 130 million by 2050. Alzheimer’s disease (AD) is the most common form of 
dementia. The cost of care for AD patients in 2015 was 818 billion US dollars and is expected to increase intensely due to 
the increasing number of patients due to the aging society. It isn’t easy to cure AD, but early detection is crucial. This paper 
proposes a multi-class classification of AD, mild cognitive impairment (MCI), and normal control (NC) subjects using three 
dimensional-convolutional neural network with Support Vector Machine classifier. A cross-sectional study on structural MRI 
data of 465 subjects, including 132 AD patients, 181 MCI, and 152 NC, is performed in this paper. The highly complex and 
spatial atrophy patterns of the brain related to Alzheimer’s Disease and MCI are extracted from structural MRI images using 
cascaded layers of the three dimensional convolutional neural network. The hectic process of segmentation and further extrac-
tion of handcrafted features is eliminated. The complete image is considered for the processing, thus incorporating every 
region of the brain for the classification. The features extracted using four cascaded layers of three dimensional-convolutional 
neural network are fed into the Support Vector Machine classifier. The proposed method achieved 97.77% accuracy which 
outperforms state of the art, and this algorithm is a promising indicator for the diagnosis of AD.

Keywords Three dimensional-convolutional neural network · Alzheimer’s disease · Mild cognitive impairment · Structural 
MRI

Introduction

Alzheimer’s is a progressive neurodegenerative disease com-
monly affecting people at their old ages. It leads to memory 
impairment and cognitive decline. The condition of the 
patient will chronically and progressively deteriorate over a 
long period. Alzheimer’s disease (AD) will be a worldwide 
burden over the coming decades due to people’s increased 
life expectancy. In 2006, around 26.6 million Alzheimer’s 
cases were reported globally, out of which 56 are at the early 
onset stage. In 2050, the population of the Alzheimer’s is 
anticipated to develop fourfold to 106.8 million [1]. AD pro-
gression can be divided into three stages: Preclinical stage, 
a change in the brain, which begins 20 or more years before 
AD diagnosis, followed by mild cognitive impairment (MCI) 
stage, starts reflecting memory impairment and change in 
cognitive function and last stage a fully established AD 
patient with total memory loss, reserved cognition and 
impaired daily activities. The recognition at the MCI stage 
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is crucial to delay further progression towards AD and take 
necessary therapeutic measures at the early stage.

To understand the underlying pathology and to find the 
critical biomarkers for detection and forecast of AD/MCI, 
various types of neuroimaging modalities have been ana-
lyzed, such as magnetic resonance imaging (MRI), positron 
emission tomography (PET), functional MRI (fMRI), etc. [2, 
3]. Structural MRI (SMRI) gives visual data about the brain 
atrophic regions due to the tissue level changes underlying 
AD/MCI. PET gives the measure of the cerebral glucose 
metabolism [4], which reflects the functional brain activity. 
Cerebro Spinal fluid (CSF) indicates the amount of amy-
loid beta-protein and amyloid tau tangles deposited in the 
fluid, an early indicator of AD. SMRI has already proven 
to be sensitive to pre-symptomatic disease and is a poten-
tial biomarker for the disease. In routine clinical practice, 
MRI seems to be the most sensitive imaging test of the brain 
[5]. It gives data around the morphology of the gray mat-
ter, white matter, and CSF. The atrophic brain regions can 
be non-invasively captured using structural MRI and help 
us get the anatomical changes in the brain. Hence, they are 
identified as a promising indicator of disease progression 
and are broadly studied with machine learning methods for 
disease diagnosis [6].

Past investigation frequently centers on a subset of binary 
classification issues: MCI converter (MCIc) vs. MCI non-
converter (MCInc), normal control (CN) vs. AD, or MCI vs. 
CN [7]. Multi-class classification of Alzheimer’s enables 
one to use the same algorithm to identify the two classes of 
disease simultaneously, which is not possible with a binary 
classification algorithm. This contributes to determining 
the severity of the disease and, hence, helps identify the 
disease at an earlier stage, i.e., at the MCI stage. Training 
the architecture with both AD and MCI data improves the 
performance of discriminating non-diseased from diseased 
ones. The aforementioned limitations of binary classification 
in determining the severity conditions and early diagnosis 
bring forth the significance of multi-class dementia (AD-
MCI-CN) classification, which still ought to be examined 
and made strides to understand the underlying complex-
ity of pathology of AD progression. This work proposes a 
multi-class AD classification using Support Vector Machine 
(SVM) classifier with the help of features extracted using 
three dimensional-convolutional neural network (3D-CNN) 
layers. The novelty comes in using the SVM layer for the 
classification rather than using a softmax; we found that fea-
tures extracted from 3D-CNN if further trained in an SVM 
classifier would give an outstanding result be a benchmark 
for Alzheimer’s diagnosis and prognosis. Also, the use of 
3D-CNN enables the extraction of nonlinear atrophy pat-
terns directly from the MRI image without any segmentation 
and handcrafted feature extraction process. Our method also 

assures us to consider the whole image and not leave out any 
brain regions that may be affected due to dementia.

In recent years, deep learning-based classification and 
feature extraction from images is increasing due to its high 
performance. Due to the availability of limited datasets and 
high dimensional data, it is challenging to get a high result 
in the case of biomedical images. In this light, we propose 
an architecture using 3D-CNN to extract the complex and 
spatial hidden atrophy region of the brain from the whole 
image without leaving out any regions and classifying to 
high accuracy with the SVM classifier. We have used a 
patch-based method that enables the algorithm to concen-
trate on each part of the brain and extract discriminative 
subtle local features related to atrophy regions [8]. Whereas 
the voxel-based method requires more computation over-
head due to the whole image analysis and Region of Interest 
(ROI) based method requires the help of medical experts 
to select the required features from images [9]. Multi-class 
AD classification (AD, cMCI, ncMCI, NC) using multilay-
ered stacked autoencoder achieved an accuracy of 47.2% is 
proposed in [10]. They had used features from 83 regions of 
interest segmented from MRI and PET images to train and 
test the architecture. The accuracy for multi-class is very less 
and also used the conventional method for feature extrac-
tion, which requires domain expertise, and it is hectic. In 
[1], authors used zero maskings with multilayered stacked 
autoencoders to learn multi-modal features from MRI and 
PET images and further classify them to AD, cMCI, ncMCI, 
NC. They achieved an accuracy of 53.7% and a moderate 
increase in the accuracy but still extracted the features using 
segmentation, thus leaving the features from other parts of 
the image.

In [7], a three-way classification of AD-MCI-NC is done 
using texture features of segmented hippocampus and fea-
tures from other ROI of the segmented parts of the MRI 
image. They created two multilayered stacked autoencod-
ers models and achieved an accuracy of 56.6% and 58% for 
two respective models. The accuracy remains less and needs 
the domain expertise to segment and extract features from 
images [11]. The 3D-CNN method is used to extract fea-
tures and classify MRI images into AD-MCI-NC in [12]. 
Here the segmentation of the different ROI is eliminated, 
and the whole image is considered, and features are directly 
extracted from the image. They achieved an accuracy of 
89.4% without any cross-validations for test data. They 
over resized the image into 68 × 95 × 79 , which will take 
away important regions and features relevant to atrophy, and 
there is a possibility for lot of misclassification. In [12, 13], 
authors used 3D-CNN layers trained with 3D autoencod-
ers to classify into AD-MCI-NC and able to attain 89.1% 
accuracy. It was a good architecture but required heavy 
computation resources for training the whole image of size 
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200 × 150 × 50 , which is much costlier and not accessible 
by everyone.

In [14], many machine learning and artificial neural net-
work (ANN) techniques were used to perform three-class 
classification and achieve maximum accuracy of 77.1%. 
They used manually extracted 46 regional cortical volume 
features, 35 cortical thickness features, three hippocampal 
volume features, and two demographic measurements total 
of 81 features. SVM classifier produced only 58.4% accu-
racy. Nonlinear graph fusion (NGF) method is used in [15] to 
classify three class and binary classification of Alzheimer’s 
diseases using complementary information from multiple 
modalities MRI, PET, and CSF. Such methods do not require 
any parameter tuning. They extracted around 2,39,304 fea-
tures from MRI, PET, and CSF by defining 83 ROI. The 
accuracy of the three-way classification is 56.6%, which is 
very less. In [16], the authors designed a Centred Kernel 
Alignment (CKA) for initializing the ANN for improved 
diagnosis of AD. For evaluating the performance of their 
method, they extracted 324 features from MRI data using 
freesurfer software and given to an ANN with CKA based 
initialized parameters to get an accuracy of 70.3%. The com-
plexity of the architecture is very less, but the performance 
was less, which cannot be used for diagnosis or prognosis. 
A 3D-CNN based 39-layer architecture inspired by ResNet 
is proposed in [17] to extract features and classify into AD, 
MCI, and CN. Similarly, [18] used a 3D VGG based net-
work to classify AD, MCI, and NC. For these deep networks, 
architecture complexity is more, the number of parameters 
is very high and requires more resources for computation, 
and hyperparameter tuning is difficult.

Methods

As discussed earlier, MRI is a powerful imaging modality 
that helps physicians to diagnose the disease. Data used in 
the preparation of this article were obtained from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI)1database 
(adni.loni.usc.edu). The ADNI was launched in 2003 as a 
public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has 
been to test whether serial MRI, PET, other biological mark-
ers, and clinical and neuropsychological assessment can be 
combined to measure the progression of MCI and early AD.

A total of 465 subjects’ details were downloaded, among 
which 152 NC, 181 MCI, and 132 AD were also chosen for 
the dataset. The following preprocessing steps are carried 
out using freesurfer software: Motion correction, Non-Uni-
form Intensity Normalization, Tailairach Transformation, 
Intensity Normalization, and Skull Stripping. Figure 1 shows 
coronal slices of the original image (Top) and preprocessed 
images (bottom) of AD, NC, and MCI, respectively. All 
MRI images were resampled to measure 256 × 256 × 256 
and downsampled to 128 × 128 × 128 voxels. Further image 
analysis is done to remove voxels outside the MRI images, 
and finally, 100 × 81 × 80 voxel size image is used. The 
full brain picture is partitioned into 3 × 3 × 3 parts to extri-
cate twenty-seven 50 × 41 × 40 voxel size patches. A patch 
is extracted in such a way that each half overlaps with its 
neighbor in every direction. The 27 MRI patches extracted 
from a single image are fed individually into the different 
stack of four 3D-CNN layers to extract the spatial atrophy 
and complex features of the brain affected area. Then, all 
the features are concatenated at the fusion layer. The con-
catenated features are then given to SVM classifier for clas-
sifying into AD, MCI, and NC.

Feature extraction using 3D‑CNN

Conventional image processing using handcrafted features 
such as hippocampus volume, cortical thickness, surface 
areas, etc. requires segmentation processes and algorithms 
for feature selection, which requires human expertise. Also, 
there is a loss of some valuable features that affect the incor-
rect and early diagnosis of AD. Deep CNN can be used to 
learn the generic features directly from the images [19]. 
At present, CNN is widely used in many image process-
ing applications, such as object detection and classification. 
The main advantage of CNN is that it can learn the various 
type of features directly from the image with minor pre-
processing without any human intervention. Mostly two 
dimensional-convolutional neural networks (2D-CNN) are 
used for various applications. In our case, 2D-CNN will 
not be able to extract rich spatial 3D information from MRI 
images, so we have employed a 3D convolutional kernel for 
feature extraction. Deep 3D-CNN [14] is built by cascading 
multiple 3D Convolutional Layer (CL) and subsampling lay-
ers alternatively to extract features hierarchically. A convo-
lutional layer performs convolution between the input image 
and a learned filter and then adds a bias term and finally 
applies a nonlinear activation layer to give feature maps from 
the filters. The 3D convolutional operation is given below

(1)
un
pq
(x, y, z) =

∑

�x

∑

�y

∑

�z

Gn−1
p

(x + �x, y + �y, z

+ �z) ×Wn
pq
(�x, �y, �z)

1 Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu). As such, the ADNI investigators contributed to the 
design and implementation of ADNI and/or provided data but did not 
participate in the analysis or writing of this report. A complete listing 
of ADNI investigators can be found at http://adni.loni.usc.edu/wp-
conte nt/uploa ds/how_to_apply /ADNI_Ackno wledg ement _List.pdf.

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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x, y and z represent the position of pixels in a 3D image. 
Wn

pq
(�x, �y, �z) indicates kernel weights connecting pth 

feature and qth feature map of the n − 1 layer and nth layer 
respectively, Gn−1

p
 indicates the pth feature map of the pre-

ceding n − 1 layer, and �x, �y, �z are the kernel sizes corre-
sponding to the x, y, z coordinates. un

pq
(x, y, z) is the output 

of 3D kernel filter. After convolution, Tanh is used as the 
activation function:

where bn
q
 is the bias term for the qth feature map of the n 

layer.
The response maps from different convolution ker-

nels are summed up to obtain the qth 3D feature map of 
n layer, Gn

q
(x, y, z) . Spatial correlations captured using 

3D-CNN helps to understand the complete volumetric 
contextual information [20]. The pooling layer is added 
after each convolutional layer. There are different kinds 
of pooling layers, such as max pool, average pool, etc. We 
have used max-pooling to compute the maximum value of 
the selected cube. This helps to take the most important 

(2)Gn
q
(x, y, z) = tanh(bn

q
+
∑

p
un
pq
(x, y, z))

features and make it more compact while moving from 
lower layers to higher layers [21]. Also able to achieve 
robustness in some variations. The third is a fully con-
nected layer where high-level reasoning is done. The out-
put from the stacked convolution layers and max-pooling 
layers are made into a one-dimensional vector and feed 
into a fully connected layer. Finally, the softmax layer is 
attached to the fully connected layer and trained using a 
cross-entropy loss function.

The complete architecture of the proposed method is 
shown in Fig. 2 in which the full brain MRI image is divided 
into numerous neighborhood patches with some overlap and 
fed to deep 3D-CNN to extract and learn features. The patch-
based method enables the algorithm to give more attention 
to each part of the brain and thereby able to extract subtle 
local patterns of the atrophy regions [22]. The whole brain 
is not completely fed into 3D-CNN since it requires a large 
number of training parameters and will lead to over-fitting 
due to a lack of large datasets. Thus it increases the over-
head of computation and memory. The final classification 
is done by ensembling all the 3D-CNN trained features of 
local patches.

Fig. 1  Coronal slices of original image (Top) and pre-processed images (bottom) of AD, NC and MC
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In this work, we have actualized each deep CNN shown in 
Fig. 3 by piling up with four convolutional layers, three max-
pooling layers, a dense layer, and a softmax layer. The filters 
used were 3 × 3 × 3 sizes, and the number of filters selected for 
four convolution layers was 15, 25, 50, 50, respectively. Max 
pooling is performed on the 2 × 2 × 2 window region. Tanh 
function is used as the non-linear activation. The weights are 
randomly initialized with Gaussian distribution using Xavier 
initialization that helps in proper convergence of algorithm 
[23]. The parameters are trained using a backpropagation algo-
rithm taking cross-entropy as the loss function. In addition 
to this, the dropout strategy is included to avoid over-fitting. 
Hyperparameters were tuned using a vast grid search method. 
The best parameters were chosen after performing 10-fold 
cross-validation. After learning the features using 3D-CNN, 
the feature vectors are extracted from the dense layer, and 27 
feature vectors are concatenated to give an overall feature vec-
tor. This feature vector is fed to the input of a multi-class SVM 
classifier to get the required classification of AD, MCI, and 
NC. Final classification was performed using the SVM classi-
fier instead of a softmax because from an empirical study; we 
came to know that the softmax gives less efficient output for 
three or more levels of classification with a limited dataset. So 
we decided to choose an SVM classifier [24–26] with Radial 
Basis Function (RBF) kernel and found good classification 
performance with acquired features of 3D-CNN, and it is due 
to the kernel trick that converts the existing feature into a lin-
early separable one for the three classes at higher dimensions.

Results

We have used a total of 900 images, out of which 300 AD, 
300 NC, and 300 MCI. Data augmentation methods were 
used to increase the number of datasets from 465 to 900 
images to avoid over-fitting the network. The algorithm 
is implemented in the Keras framework in python using 
TensorFlow. The experiment is conducted using a PC with 
Nvidia GeForce, RTX2080 11 GB GPU. The 27 local 
3D-CNN is trained independently to capture local patterns. 
Adam optimizer is used to train the local 3D-CNN. Dropout, 
L1, L2 regularizers are used to avoid over-fitting. The total 
learnable parameters of the proposed network are around 
three million, which is less compared to other standard 
architectures, so require lesser time and fewer resources for 
processing. We validate the performance of our developed 
method using Accuracy.

Our result for test data with 30 AD, 30 NC, and 30 MCI 
came out to be 97.77%. This accuracy is achieved using an 
RBF kernel with a gamma value of 0.02 and c = 1. Grid 
search method was used to tune the two hyperparameters 
i.e., gamma value and c value. One of the reasons why RBF 
kernel gives high accuracy is because the dimension of fea-
tures (810) and the number of training samples (810) are the 

Accuracy =
TP + TN

TP + FP + TN + FN

Fig. 2  Proposed architecture for 3 way classification
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same, i.e., the dimension is equal to the number of training 
samples. The SVM is giving more accuracy compared to a 
softmax classifier, because of the large margin classifying 
ability of the SVM from the support vectors. The kernels 
in SVM help in achieving this result due to the projection 
of data into higher dimensions and form linear separable 

hyperplanes at this dimension. The confusion metrics are 
also computed to describe the performance of test data for 
3-way classification and given in Table 1. Based on the 
confusion metrics, we further evaluated our method using 
Precision, Recall, and F1-Score, as given in Table 2. These 
metrics can be calculated as

 

Discussion

This study proposes a novel method for multi-class classi-
fication of AD, MCI, and NC subjects using 3D-CNN with 
SVM classifier. The highly complex and spatial atrophy 
patterns of the brain, related to AD and MCI are extracted 
from SMRI images using cascaded layers of the 3D-CNN. 
The hectic process of segmentation and further extraction 
of handcrafted features is eliminated. The complete image 
is considered for the processing, thus incorporating every 
region of the brain for the classification. The 3D-CNN auto-
matically learns feature representation from input images 
and is not greatly affected by image processing. Since the 
performance of the CNN depends on its architecture, we 
have proposed a 3D-CNN architecture which can classify 
the three categories with a noticeable accuracy. The features 
extracted using four cascaded layers of 3D-CNN are fed into 
the SVM classifier for classification. The proposed method 

Precision∕TrueNegative Rate∕Specificity =
TP

TP + FP

Recall∕True Positive Rate∕Sensitivity =
TP

TP + FN

F1 − Score =
2 × Precision × Recall

Precision + Recall

Fig. 3  3D-CNN architecture for feature extraction

Table 1  Classification performance

Class label Precision Recall F1-Score

AD 0.938 1 0.968
NC 1 1 1
MCI 1 0.933 0.966

Table 2  Confusion matrix of 
the proposed method

Predicted class Targeted class

AD NC MCI

AD 30 0 0
NC 0 30 0
MCI 2 0 28
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achieved 97.77% accuracy, which outperforms the state-of-
the-art and is shown in the comparison table of previous 
workflows given in Table 3.

Figures 4, 5 and 6 show the saliency map generated by 
CNN to differentiate among AD, MCI, and NC individu-
als obtained using Gradient Weighted Class Activation 

Mapping (Grad-CAM) [21, 29]. The sagittal, coronal, and 
axial view with highlighted areas signifies the brain’s main 
affected region for AD and MCI. 3D-CNNs selected the tem-
poral and parietal lobes for accurate classification of AD, 
NC, and MCI subjects. The saliency maps for AD subjects 
are shown in Fig. 4. The most discriminative features for the 

Table 3  Comparison with 
existing works

Methods Accuracy (%) Image modality Techniques used

[27] 77.1 MRI Classification fusion
[28] 47 MRI-PET SAE with elastic net
[15] 56.6 MRI Non-linear graph fusion
[16] 68.8 MRI Neural network pre-trained

Using centered kernel alignment
[7] (model 1) 56.6 MRI SAE+elastic net
[7] (model-2) 58 MRI SAE+elastic net
[17] 87 MRI 3D-CNN with 39 layers
[12] 89.1 MRI 3D Adaptable CNN
Proposed method 97.77 MRI 3D-CNN with SVM

Fig. 4  Saliency map generated 
by the proposed 3D-CNN for 
AD

Fig. 5  Saliency map generated by the proposed 3D-CNN for MCI



1226 Physical and Engineering Sciences in Medicine (2020) 43:1219–1228

1 3

AD classification task were mainly distributed around the 
medial temporal lobe and parietal lobe. In the medial tempo-
ral lobe, the subcortical structures such as the hippocampus, 
amygdala, entorhinal cortex, and parahippocampus are the 
most affected in AD. These brain regions have previously 
been closely related to dementia in many existing studies 
[5, 13]. The Hippocampal area is the most discriminative 
one shown clearly in the coronal section of the image. Hip-
pocampal volume is known to be a biomarker of Alzhei-
mer’s disease that precedes cognitive impairment and is very 
much effective in the auto diagnosis of AD [11]. The coronal 
section also highlights the atrophy of the entorhinal cortex 
and parahippocampus, whereas the amygdala is highlighted 
in the axial section of the image. The atrophy of the pari-
etal region shown in the parasagittal view carries positive 
predictive value for diagnosing AD. The saliency maps for 
MCI subjects are shown in Fig. 5. The lateral sagittal, axial, 
and coronal views of the MCI saliency map specifies the 
amygdala and hippocampal region as the most differentiat-
ing features for detecting MCI patients. The left amygdala 
is more highlighted, as seen in the axial view when com-
pared to the AD patients, playing a vital role in detecting the 
early stage of AD [13]. Also, the heat map of coronal view 
over the lateral ventricles’ temporal horn area becomes an 
important feature for diagnosing MCI as the enlargement 
of the ventricular region is a measure of Alzheimer’s dis-
ease progression [5]. Atrophy of the entorhinal cortex and 
parahippocampus seen in the coronal section also helps in 
detecting MCI. The saliency maps for Normal subjects are 
shown in Fig. 6. The most differentiating regions are the 
amygdala and hippocampus area. This confirms that in the 
multi-class diagnosis of AD, MCI and NC, the amygdala 
and hippocampus play a vital role in differentiating them.

This algorithm is a promising indicator for the diagnosis 
of AD as well as MCI and it is due to the contribution of 
both the cascaded 3DCNN and SVM classifier. The cas-
caded structure of 3D-CNN applied to each patch (A patch is 
extracted in such a way that each half overlaps with its neigh-
bor in every direction in order to prevent any information 

loss) of brain image will disentangle the complex and struc-
tural dependencies of atrophy regions related to disease and 
learn a higher level of features towards the end of the layers. 
This will help discriminate between AD and NC and find 
the important features to classify MCI patients from AD 
and NC, which is very challenging as only subtle changes 
exist. The result of the F1-score of MCI i.e., 0.966, verifies 
the above statement. The features obtained from 27 patches 
using cascaded 3D-CNN are concatenated to get the global 
feature of the total image.

Further, the feature is trained and classified using an SVM 
classifier. After doing much empirical study, it is found that 
softmax is not efficient in performing three or more clas-
sification with the features learned from a limited dataset. 
So we used the SVM classifier with RBF kernel and found 
good classification performance. It is due to the kernel trick 
that converts the existing feature into linearly separable for 
three classes at higher dimensions. There is more room for 
improvement either by increasing the number of subjects or 
using a multi-modal approach. In the latter, we can use PET 
and CSF datasets to learn complex features and use them for 
early diagnosis of the disease [30].

Conclusion

A 3D-CNN based architecture using an SVM classifier is 
built to classify different levels of AD. Multi-class classifi-
cation enables the detection of the three levels of diseases 
from the same algorithm. It increases the chance of detecting 
the disease at the early stage i.e., at the MCI stage. There-
fore, we can use this proposed method for the diagnosis and 
prognosis of the disease, which is not possible with binary 
level classification algorithms. Cascaded 3D-CNN design 
helps to learn the most desirable and discriminating generic 
features of the disease, which results in high performance 
in the classification. Also, by training the same architecture 
with both AD and MCI datasets, there is less misclassifica-
tion into normal controls, which make sure that no diseased 

Fig. 6  Saliency map generated by the proposed 3D-CNN for Normal
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person is left unidentified from the disease, which is most 
crucial in computer-aided diagnosis. The proposed method 
achieved 97.77% accuracy, which outperforms the state-of-
the-art, and this algorithm is a promising indicator for the 
diagnosis of AD. Since we are using a CNN, the features 
are automatically learned from the images and able to avoid 
the hectic and time-consuming process of segmentation and 
extraction of handcrafted features. The performance levels 
can be further increased by including more subjects and 
using multi-modal data such as PET and CSF.
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